skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ma, Senjie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The synthesis and characterization of base-stabilized and base-free pincer-type bis(phosphine)/silylene [P 2 Si]Ru complexes are reported. The base-free complex readily reduces CO 2 and CS 2 via silylene-assisted hydride transfer, affording structurally distinct products with silicon-to-ruthenium formate and dithioformate bridges. 
    more » « less
  2. Abstract A metal/ligand cooperative approach to the reduction of small molecules by metal silylene complexes (R2Si=M) is demonstrated, whereby silicon activates the incoming substrate and mediates net two‐electron transformations by one‐electron redox processes at two metal centers. An appropriately tuned cationic pincer cobalt(I) complex, featuring a central silylene donor, reacts with CO2to afford a bimetallic siloxane, featuring two CoIIcenters, with liberation of CO; reaction of the silylene complex with ethylene yields a similar bimetallic product with an ethylene bridge. Experimental and computational studies suggest a plausible mechanism proceeding by [2+2] cycloaddition to the silylene complex, which is quite sensitive to the steric environment. The CoII/CoIIproducts are reactive to oxidation and reduction. Taken together, these findings demonstrate a strategy for metal/ligand cooperative small‐molecule activation that is well‐suited to 3dmetals. 
    more » « less